layout: true --- class: inverse, center, middle background-image: url(figs/title_backdrop.jpg) background-size: cover # Awaken the inner cartographer <img src="https://user-images.githubusercontent.com/520851/34849243-0972e474-f722-11e7-9a3d-2d4bf5075835.png" width="150px"/> ### Lecture 4 .large[Ayush Patel] <br> Part of the CSD workshop on research methodology<br> 2021-05-03 <br><br> .tiny[sf Edzer Pebesma's Github page.] --- name: Introduction class: left,middle ## Find me [__@ayushbipinpatel__](https://twitter.com/ayushbipinpatel) <img src="" width=5%> [__@AyushBipinPatel__](https://github.com/AyushBipinPatel) <img src="" width=5%> [__ayushpatel.netlify.app__](https://ayushpatel.netlify.app/) <img src="" width=5%> [__ayush.ap58@gmail.com__](ayush.ap58@gmail.com)<img src="" width=5%> --- class: left, middle # About You Pre-requisite for this lecture. <br> <br> <br> -- You know __how to create an object__ <br> <br> <br> -- You know __basics of {dplyr}__ <br> <br> <br> -- You know __basics of {ggplot2}__ <br> <br> <br> -- You know __how to use the %>% operator__ <br> <br> <br> --- class: left, middle # Pre-workshop set-up Copy the following command in your script and run: > install.packages("sf") <br> > install.packages("geojsonsf") <br> > library(sf) <br> > library(geojsonsf) <br> > library(dplyr) <br> > library(ggplot2) <br> _Source of shape file : covid19india_ > geojson_sf("https://raw.githubusercontent.com/AyushBipinPatel/CSD-Workshop-for-Programming-in-R/main/india-districts-2019-734.geojson") -> ind_shp --- class: left,middle ### What will you be able to create by the end of this class .pull-left[ <!-- --> ] .pull-right[ <!-- --> ] --- class: left, middle # Process of creating a map -- _Get Shape file_<br> A shape file is a data object that contains information for boundaries of a place or region. <br> <br> <br> -- _Merge Data with shape file using left_join()_ <br> <br> <br> -- _Plot using ggplot2 and geom_sf()_ --- class: left, top # Step1: Merging data .panelset[ .panel[.panel-name[DATA1] ```r tibble( emp_id = c(111,222,333), emp_name = c("Raj", "Simran", "Bauji"), emp_salary = c(5000,5000,500000) ) -> obj_1 obj_1 ``` ``` ## # A tibble: 3 x 3 ## emp_id emp_name emp_salary ## <dbl> <chr> <dbl> ## 1 111 Raj 5000 ## 2 222 Simran 5000 ## 3 333 Bauji 500000 ``` ] <!---panel 1-----> .panel[.panel-name[DATA2] ```r tibble( emp_id = c(111,222,333), emp_name = c("Raj", "Simran", "Bauji"), emp_appraisal = c(0.50,.50,0.00) ) -> obj_2 obj_2 ``` ``` ## # A tibble: 3 x 3 ## emp_id emp_name emp_appraisal ## <dbl> <chr> <dbl> ## 1 111 Raj 0.5 ## 2 222 Simran 0.5 ## 3 333 Bauji 0 ``` ]<!---panel 2-----> .panel[.panel-name[CODE] ```r left_join(obj_1, obj_2, by = c("emp_id" = "emp_id")) ->out_obj ``` ]<!---panel 3-----> .panel[.panel-name[MERGED DATA] ```r out_obj ``` ``` ## # A tibble: 3 x 5 ## emp_id emp_name.x emp_salary emp_name.y emp_appraisal ## <dbl> <chr> <dbl> <chr> <dbl> ## 1 111 Raj 5000 Raj 0.5 ## 2 222 Simran 5000 Simran 0.5 ## 3 333 Bauji 500000 Bauji 0 ``` ] ] --- class: left,top # How to plot a shape file ```r ggplot(ind_shp)+ geom_sf() ``` <!-- --> --- class: left, top count: false Mapping a variable to the region .panel1-show_fill_plt-auto[ ```r # use merged data *ggplot(merged_data) ``` ] .panel2-show_fill_plt-auto[ <!-- --> ] --- count: false Mapping a variable to the region .panel1-show_fill_plt-auto[ ```r # use merged data ggplot(merged_data)+ * geom_sf(aes(fill = silly_ex1)) ``` ] .panel2-show_fill_plt-auto[ <!-- --> ] --- count: false Mapping a variable to the region .panel1-show_fill_plt-auto[ ```r # use merged data ggplot(merged_data)+ geom_sf(aes(fill = silly_ex1))+ * scale_fill_gradient(low = "#9ba746" , * high = "#e37400") ``` ] .panel2-show_fill_plt-auto[ <!-- --> ] --- count: false Mapping a variable to the region .panel1-show_fill_plt-auto[ ```r # use merged data ggplot(merged_data)+ geom_sf(aes(fill = silly_ex1))+ scale_fill_gradient(low = "#9ba746" , high = "#e37400")+ * theme( * panel.background = element_rect( * fill = "#ffffff"), * panel.grid = element_blank(), * axis.title = element_blank(), * axis.line = element_blank(), * axis.ticks = element_blank(), * axis.text = element_blank(), * legend.position = "bottom" * ) ``` ] .panel2-show_fill_plt-auto[ <!-- --> ] <style> .panel1-show_fill_plt-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-show_fill_plt-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-show_fill_plt-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- # Your Turn Run the following code: > readr::read_csv(https://api.covid19india.org/csv/latest/district_wise.csv"") -> ind_covid_data _data source: covid19india_ ``` ind_shp %>% mutate( match_key = str_c("st_nm", "district") ) -> ind_shp ind_covid_data %>% mutate( match_key = str_c("State", "District") ) -> ind_coid_data ``` Merge the data sets and create the Map of your choice. --- class: inverse,center, middle background-image: url(figs/thank-you.jpg) background-size: cover # Thank You <br><br> .big[Feedback is welcome at: _ayush.ap58@gmail.com_] .tiny[Photo by David Sun from Pexels] ---