layout: true --- class: inverse, center, middle background-image: url(figs/title_backdrop.jpg) background-size: cover # Building your masterpiece using <img src="https://raw.githubusercontent.com/rstudio/hex-stickers/master/thumbs/ggplot2.png" width="150px"/> ### Lecture 3 .large[Ayush Patel] <br> Part of the CSD workshop on research methodology<br> 2021-05-03 <br><br> .tiny[ggplot2 logo from rstudio hex sticker git page] --- name: Introduction class: left,middle ## Find me [__@ayushbipinpatel__](https://twitter.com/ayushbipinpatel) <img src="" width=5%> [__@AyushBipinPatel__](https://github.com/AyushBipinPatel) <img src="" width=5%> [__ayushpatel.netlify.app__](https://ayushpatel.netlify.app/) <img src="" width=5%> [__ayush.ap58@gmail.com__](ayush.ap58@gmail.com)<img src="" width=5%> --- class: left, middle # About You Pre-requisite for this lecture. <br> <br> <br> -- You know __how to create an object__ <br> <br> <br> -- You know __how to write conditional statements in R.__ <br> <br> <br> -- You know __how to access desired elements from a vector or a data frame.__ <br> <br> <br> -- You know __how to subset rows from a data frame.__ <br> <br> <br> -- You know __how to mutate a data frame.__ --- class: left, middle # Pre-workshop set-up Copy the following command in your script and run: > library(dplyr) <br> > library(ggplot2) <br> > library(palmerpenguins) <br> ## Dont we need to install the ggplot2 library? ## What is the ggplot2 library? --- class: left, middle background-image: url(figs/concept_map_visualization.jpg) background-size: contain --- class: left count: false Components of a plot .panel1-comp_plot-auto[ ```r * ggplot(data = penguins) # the plot area and data ``` ] .panel2-comp_plot-auto[ <!-- --> ] --- count: false Components of a plot .panel1-comp_plot-auto[ ```r ggplot(data = penguins)+ # the plot area and data * geom_boxplot(aes(species, body_mass_g, * fill = species), * alpha = 0.5) # geom and aesthetic ``` ] .panel2-comp_plot-auto[ <!-- --> ] --- count: false Components of a plot .panel1-comp_plot-auto[ ```r ggplot(data = penguins)+ # the plot area and data geom_boxplot(aes(species, body_mass_g, fill = species), alpha = 0.5)+ # geom and aesthetic * geom_jitter(aes(species,body_mass_g, * colour = species), * alpha = 0.5) # another layer with aesthetics ``` ] .panel2-comp_plot-auto[ <!-- --> ] --- count: false Components of a plot .panel1-comp_plot-auto[ ```r ggplot(data = penguins)+ # the plot area and data geom_boxplot(aes(species, body_mass_g, fill = species), alpha = 0.5)+ # geom and aesthetic geom_jitter(aes(species,body_mass_g, colour = species), alpha = 0.5)+ # another layer with aesthetics * theme_bw() # theme ``` ] .panel2-comp_plot-auto[ <!-- --> ] --- count: false Components of a plot .panel1-comp_plot-auto[ ```r ggplot(data = penguins)+ # the plot area and data geom_boxplot(aes(species, body_mass_g, fill = species), alpha = 0.5)+ # geom and aesthetic geom_jitter(aes(species,body_mass_g, colour = species), alpha = 0.5)+ # another layer with aesthetics theme_bw()+ # theme * labs( * x = "Species", * y = "Body mass in grams", * title = "Distribution of Mass of penguins" * ) # labels ``` ] .panel2-comp_plot-auto[ <!-- --> ] <style> .panel1-comp_plot-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-comp_plot-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-comp_plot-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> ??? explain each layer and aes mapping --- class: left, middle # What will you learn? .pull-left[ Types of geometries and when to use them<br><br> How to map variables in data to aesthetics of a plot<br><br> About the theme of a plot<br><br> Labeling the plot<br><br> ] .pull-right[ geom_*() (density, histogram, bar, point, jitter, col, boxplot)<br><br> The aes() (mapping variables to axes, shape, size, colour, fill and alpha of the geom)<br><br> Intro to available themes theme_*()<br><br> The labs() to add title, subtitle, axes labels and caption to the plot.<br><br> ] --- class: left,top # Plotting one continuous variable .pull-left[ <code class ='r hljs remark-code'><span style='background-color:pink'>ggplot</span>(<span style='color:red'>data</span> = <span style='color:CornflowerBlue'>penguins</span>)<span style='background-color:#ffff7f'>+</span><br> <span style='background-color:pink'>geom_density</span>(<span style='background-color:pink'>aes</span>(<span style='color:red'>x</span> = <span style='color:CornflowerBlue'>body_mass_g</span>))</code> <!-- --> ] .pull-right[ <code class ='r hljs remark-code'><span style='background-color:pink'>ggplot</span>(<span style='color:red'>data</span> = <span style='color:CornflowerBlue'>penguins</span>)<span style='background-color:#ffff7f'>+</span><br> <span style='background-color:pink'>geom_histogram</span>(<span style='background-color:pink'>aes</span>(<span style='color:red'>x</span> = <span style='color:CornflowerBlue'>body_mass_g</span>))</code> <!-- --> ] --- class: left, center background-image: url(figs/your-turn.jpg) background-size: cover .left-column[ # <svg viewBox="0 0 576 512" style="position:relative;display:inline-block;top:.1em;height:3em;" xmlns="http://www.w3.org/2000/svg"> <path d="M528 64H48C21.49 64 0 85.49 0 112v288c0 26.51 21.49 48 48 48h480c26.51 0 48-21.49 48-48V112c0-26.51-21.49-48-48-48zm8 336c0 4.411-3.589 8-8 8H48c-4.411 0-8-3.589-8-8V112c0-4.411 3.589-8 8-8h480c4.411 0 8 3.589 8 8v288zM170 270v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm-336 82v-28c0-6.627-5.373-12-12-12H82c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm384 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zM122 188v-28c0-6.627-5.373-12-12-12H82c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm-98 158v-16c0-6.627-5.373-12-12-12H180c-6.627 0-12 5.373-12 12v16c0 6.627 5.373 12 12 12h216c6.627 0 12-5.373 12-12z"></path></svg> Your Turn ] .right-column[ .left[ .big[ Make a histogram of a continuous variable of your choice from the penguins data. __Plot is also an object__. Save it as you would save a vector. __Name it `chart_density`__ ] .tiny[background: Photo by Elena Saharova from Pexels] ] ]
04
:
00
--- class: left, top # Plotting one discrete variable <code class ='r hljs remark-code'>ggplot(data = penguins)<span style='background-color:#ffff7f'>+</span><br> <span style='background-color:pink'>geom_bar</span>(<span style='background-color:pink'>aes</span>(<span style='color:CornflowerBlue'>x = island</span>))</code> <!-- --> --- class: left, top # Plotting two continuous variables <code class ='r hljs remark-code'>ggplot(data = penguins)+ <br> <span style='background-color:pink'>geom_point</span>(<span style='background-color:pink'>aes</span>(<span style='color:CornflowerBlue'>x = bill_length_mm</span>,<span style='color:CornflowerBlue'>y = bill_depth_mm</span>))</code> <!-- --> --- class: left, center background-image: url(figs/your-turn.jpg) background-size: cover .left-column[ # <svg viewBox="0 0 576 512" style="position:relative;display:inline-block;top:.1em;height:3em;" xmlns="http://www.w3.org/2000/svg"> <path d="M528 64H48C21.49 64 0 85.49 0 112v288c0 26.51 21.49 48 48 48h480c26.51 0 48-21.49 48-48V112c0-26.51-21.49-48-48-48zm8 336c0 4.411-3.589 8-8 8H48c-4.411 0-8-3.589-8-8V112c0-4.411 3.589-8 8-8h480c4.411 0 8 3.589 8 8v288zM170 270v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm-336 82v-28c0-6.627-5.373-12-12-12H82c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm384 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zM122 188v-28c0-6.627-5.373-12-12-12H82c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm96 0v-28c0-6.627-5.373-12-12-12h-28c-6.627 0-12 5.373-12 12v28c0 6.627 5.373 12 12 12h28c6.627 0 12-5.373 12-12zm-98 158v-16c0-6.627-5.373-12-12-12H180c-6.627 0-12 5.373-12 12v16c0 6.627 5.373 12 12 12h216c6.627 0 12-5.373 12-12z"></path></svg> Your Turn ] .right-column[ .left[ .big[ Make a scatter plot of two continuous variables of your choice from the penguins data. __Name it `chart_scatter`__ ] .tiny[background: Photo by Elena Saharova from Pexels] ] ]
04
:
00
--- class: left, top ## Plotting one continuous anf one discrete variable .yscroll[ .pull-left[ <code class ='r hljs remark-code'>penguins %>% <br> group_by(species) %>% <br> summarise(<br> avg_body_mass = mean(body_mass_g,na.rm = T)<br> ) %>% <br> ggplot() <span style='background-color:#ffff7f'>+</span><br> <span style='background-color:pink'>geom_col</span>(<span style='background-color:pink'>aes</span>(<span style='color:CornflowerBlue'>species,avg_body_mass</span>))</code> <!-- --> ] .pull-right[ <code class ='r hljs remark-code'>penguins %>% <br> ggplot() <span style='background-color:#ffff7f'>+</span><br> <span style='background-color:pink'>geom_boxplot</span>(<span style='background-color:pink'>aes</span>(<span style='color:CornflowerBlue'>species,body_mass_g</span>))</code> <!-- --> ] ] --- class: left, top # Aesthetics of geoms .yscroll[ .panelset[ .panel[.panel-name[__fill__] ```r penguins %>% ggplot()+ geom_boxplot(aes(species, body_mass_g, fill = sex)) ``` <!-- --> ] .panel[.panel-name[__colour__] ```r penguins %>% ggplot()+ geom_point(aes(bill_length_mm, bill_depth_mm, colour = species)) ``` <!-- --> ] .panel[.panel-name[__shape__] ```r penguins %>% ggplot()+ geom_point(aes(bill_length_mm, bill_depth_mm, shape = species)) ``` <!-- --> ] .panel[.panel-name[__alpha__] ```r penguins %>% ggplot()+ geom_point(aes(bill_length_mm, bill_depth_mm, colour = species), alpha = 0.5) ``` <!-- --> ] .panel[.panel-name[__size__] ```r penguins %>% ggplot()+ geom_point(aes(bill_length_mm, bill_depth_mm, size = species), alpha = 0.5) ``` <!-- --> ] ] ] --- class: left, middle # Plot Labels .pull-left[ ``` ..... ..... ## Your awesome plot code ..... + labs( title = "Chart title", subtitle = "Chart Subtitle", x = "x-axis title", y = "y-axis title", caption = "Chart caption" ) ``` ] .pull-right[ <!-- --> ] --- class: left, middle # GO Crazy Copy the following commands in console and execute one after another. >install.packages("nycflights13") <br> >library(nycflights13) Use the `View()` function to see the `flights` data. __Make a chart that you think will show some interesting insight.__ --- class: inverse,center, middle background-image: url(figs/thank-you.jpg) background-size: cover # Thank You <br><br> .big[Feedback is welcome at: _ayush.ap58@gmail.com_] .tiny[Photo by David Sun from Pexels] ---